Skip to main content
Skip to and open main menu Home Modification Resources
Provided by the HMinfo Clearinghouse
Translating high quality research specific to better design and building practice
Translating high quality research specific to better design and building practice

Research Library

The HMinfo Research Library contains an in-depth collection of materials on home modifications and related subjects.

The Research Library does not lend books and other items. Under special circumstances, requests to use the library may be made by emailing .

Search Form

Characterizing Asymmetry across the Whole Sit to Stand Movement in Healthy Participants

Journal of Biomechanics

Author: Schofield, J., Parent, E., Lewicke, J., Elrich, M., Adeeb, S.
Year: 2013
Type: Journal Article

Abstract:

Unedited manurscript: Sit-to-stand transfer (STS) is a common yet critical prerequisite for many daily tasks. Literature conducted on healthy STS often assume the body to behave symmetrically across the left and right side; yet only a few studies have been conducted to investigate this supposition. These studies have focused on a single numerical indicator such as peak joint moment (JM) values to describe symmetricity; however, STS is a dynamic and time dependent movement. This study addresses the validity of peak value analyses through the introduction of a time based peak-offset measure and proposes two time-dependent techniques to further characterize asymmetry and assesses their feasibility in ten (10) healthy male participants. JM and joint power (JP) over the whole STS movement was determined using motion capture and inverse dynamics. Using a paired one-tailed t-test differences were found in the time at which the left and right side reached peak values in all lower extremity joints with exception of the hip JM (p<0.05). Using a measure of JM and JP straight-difference it was determined that the ankle joint displayed the largest number of JM and JP development strategies of all the lower extremity joints. Finally, through numerical integration of the JM and JP data with respect to time, it was found that the longer one side spends dominating the movement, the larger the excess angular impulse and work that can be expected from that side. The results suggest that when analyzing STS movements, one must be aware of the potential asymmetry present even in healthy movements. Furthermore, a simple peak JM or JP analysis may not fully describe the extent of these asymmetries.


Further Details

Full Title Journal of Biomechanics
Accession Number August, 2013
Research Notes Electronic copy added 21/08/2013
Keywords mobilitywhole cyclesit-to-stand

Reads 419